Education, education
Why teaching physics might be the career for you and how to get the training you need
Most physics graduates have an idea of what it’s like to be a physics teacher, having been taught by one in the recent past. Indeed, some may even be in physics today thanks to a particularly inspiring teacher. But not enough graduates consider teaching as a potential career option. Find out how you can become a physics teacher in the UK and hear from classroom teachers Cara Hutton and Dave Gash on how and why they made the choice to become educators and what the job involves.

Physics can be a complex and demanding subject. Whether it’s the latest research updates from the world of nanotechnology or the newest results from the Large Hadron Collider, understanding such advances and the basics that they are built on is no mean feat. Explaining these concepts to students is even harder, and specialist physics teachers are needed more than ever to ensure that enough students are encouraged to go into physics to take up the many exciting opportunities on offer. And although many countries face a shortage of specialist physics teachers, there are now lots of recruitment initiatives and programmes to help physicists to become teachers and to give non-specialist physics teachers the skills to teach physics with confidence.

A good teacher can invoke a passion for a subject from an early age, arming students with the knowledge and confidence to pursue it in the future. When it comes to the sciences, and especially physics, there is often a misconception that the field is impenetrable or beyond the grasp of the average student. But who better than an actual physicist to convince them otherwise, and help shape the next generation of physicists.

A good teacher can also be a good mentor. Just the other day I came across my notes from my first placement and saw that after I did my very first starter activity in a lesson, a year 7 (ages 11–12) boy came up to me and said “That was really good Miss! I’m looking forward to next time!”

I love that every day is different. I can teach the same lesson to two separate classes and know it will be different because of the questions the two classes will ask. The best thing is always the pupils. I know at the end of the year that I will have helped them understand more than they did at the start and given them a better choice in life because of it.

I was 20 when I was accepted by the University of Liverpool to study physics. I honestly didn’t take the course seriously at first, despite deeply enjoying its content, and I had no clue what direction it would eventually take me in. That’s when a couple of other students on the course said they were going to go into teaching. My life changed forever.

The PGCE course connected me with like-minded people. It unlocked a thirst for learning that was lacking in my previous incarnations. I was actually quite an insecure and shy individual and I remember shaking when I went for the interview for the course. My first day at my first placement school was even more terrifying. Fortunately, I was “team teaching” a group of year 7 students along with another trainee teacher, so we supported each other through it. As a physics specialist, I was very much in demand and I was able to quickly secure a job. Within 18 months, I had been given the role of A-level physics co-ordinator for my school, and I was formally promoted to co-ordinator-level the following year.

Fast-forward eight years and I am now the head of science at the same school and I absolutely love it. In the intervening years, I met my wife, who is a drama teacher at my school, and I was formally promoted to head of A-level physics co-ordinator for my school. I then went on to gain a PGCE at Liverpool and has recently completed a Master’s degree for 10 years. He is the head of science at Gateacre School in Liverpool and has recently completed a Master’s degree in education (leadership and management).
A major concern in physics education today is the large gap in the sector for well-qualified, skilled, physics graduates who have a passion for teaching. While there are plenty of driven physics teachers nationwide, we are easily outnumbered by our colleagues in biology and chemistry and they often end up teaching GCSE and A-level physics due to the current shortage.

If you are wondering what constitutes a typical day as a teacher, there is no such thing! Other than following my teaching timetable and planning my lessons for the week, it is very difficult to offer such an overview, given how unique each day truly is. This is one of the best parts of the job – not knowing where the day will take you. What I can say is that I know full well that I enjoy each and every moment.

I personally had very old-school ideas about what a physics teacher does when I first entered the profession. The reality has been so different. Working through experiments and exciting demonstrations – my laboratory ceiling now needs a few coats of paint – going on school trips to CERN and Jodrell Bank, and running competitions with other schools are all a part of a rich and varied job that allows me to be both creative and academic.

Working with children is incredibly rewarding and surprising. I am paid to teach young people about science and help them to understand the universe around them. Yes, it is hard work and there are a lot of things that I would change about education in the UK if I had the power. However, those things pale into insignificance when my students arrive and sit awaiting their next exciting experience in my classroom.

Routes to take

If you are considering becoming a qualified physics teacher in the UK, there are several possible routes. A small number of universities in England, Scotland and Wales offer undergraduate degrees in physics or science leading to Qualified Teacher Status (QTS), but the majority of teachers obtain this status by training in postgraduate programmes. Postgraduates can either specialize in physics with science or physics with maths and there are two main routes: university-led training and school-led training (see box above right).

University-led training is usually taken as a one-year full-time programme (though part-time options that take longer are also available), leading to a qualification such as a Postgraduate Certificate in Education (PGCE) or a Postgraduate Diploma in Education (PGDE). These courses involve a mixture of training at a higher-education institution and at least 24 weeks spent teaching in schools, usually carried out at two placements in different schools.

As for school-led training (generally only available in England) it can lead to a PGCE or equivalent in a number of ways. The School Direct programme places candidates (who may be paid or unpaid) in a school that will deliver training tailored to the trainee’s and the school’s needs. An alternative, known as School Centred Initial Teacher Training (SCITT), takes places within a group of neighbouring schools, with a lead school taking overall responsibility for a trainee’s development.

You can apply for a place on an undergraduate or postgraduate course via the Universities and Colleges Admissions Service (UCAS), which manages applications to UK full-time higher-education courses. There is a further route for postgraduates in England called Researchers in Schools, which is a three-year bespoke, salaried teacher-training course for candidates who have completed (or are finishing) their PhD.

Whatever your route into teaching, once you’ve finished your training, you’ll be classified as a newly qualified teacher (NOT) and will spend your first year in the classroom with a reduced timetable. In England and Wales, QTS is only required for teachers in local-authority state schools. However, schools outside the control of local authorities – such as independent schools – also prefer to recruit qualified teachers. Also, career options for teachers are significantly better if they have QTS.

The Institute of Physics (which publishes Physics World) works in a number of ways to improve physics education, by helping with the recruitment and retention of specialist physics teachers. The Institute’s Teacher Training Scholarships programme has been running for over five years. In 2017/18 it will offer £30,000 tax-free funding and support to 150 talented individuals entering physics teacher training in England. The Institute’s School Experience Programme can help you find a school that will allow you to spend some time there observing physics lessons. The Institute also offers support to teachers of physics throughout their careers, from workshops and events to teaching resources and tailored continuous professional development.
Leadership lessons learnt in the lab

Skills learnt as part of a research team translate well to a career as a leader in education says physicist and headteacher Mark Whalley

Much is written about the shortage of physics graduates entering teaching, about how many children are never taught physics by a subject-specialist and about the need for more pupils to pursue physics beyond school. But there is another area of crisis in schools and that is leadership. Filling leadership posts is becoming increasingly challenging, especially at the top of the profession. Now is a time full of opportunities and for those with the potential and the skills, leadership in schools could be the perfect career path.

There are opportunities for the full range of physics graduates in teaching, but for those with research or postgraduate experience the prospects may be even better. Reflecting on my own career, the PhD itself wasn’t the key factor in helping me move up the different levels of the education profession. Instead it was the range of skills gained during that postgraduate degree that laid the foundations for leadership success.

After graduating in 1990 I spent three years doing a PhD in particle physics at the University of Birmingham, UK, while working on the OPAL experiment at the Large Electron–Positron Collider at the CERN particle-physics laboratory in Geneva, Switzerland. After receiving my doctorate, I trained to be a teacher for a year before returning to do a postdoctoral degree in biophysics. Three years later, I began my teaching career in a challenging comprehensive (secondary) school. Within a year or so, I had my first low-level leadership role as an assistant headteacher in a large school, reaching headship four years ago.

Despite leaving research for a full-time career as an educator, it was my experience while still a part of research teams that equipped me with key skills and ultimately helped forge my leadership. At the heart of my research life was the teamwork necessary for the functioning of any experimental project. The size of a team varied over my research life, from small teams of three to large detector groups at CERN. A common factor in any of these settings that amazed me, and still does, was the level of democracy and inclusiveness shown within the team. Young, inexperienced voices were heard and given the opportunity to speak by those with years of expertise, acknowledging that age on its own was no guarantee of creativity and innovation. While the implicit hierarchy was always there – maintained by respect for those above you – everyone felt valued and a part of something bigger.

The lessons learnt during that time have served me well throughout my school leadership career. Collaborative approaches within leadership engender shared ownership and this, in turn, ensures all those in a team feel valued. Treating those who work for you as intellectual equals produces commitment, while failure to do so produces resentment. The best leaders in education know this, and they share their authority, invest in their colleagues and place faith in the ability of others. The worst exercise power, alienate their colleagues and encourage division rather than unity.

But there are a range of other skills developed in my research years that are worth mentioning. Effective school leaders must be analytical. Though much of school leadership is about “soft skills”, and there is still a great deal that is analytical. Judging pupil performance and teacher effectiveness, handling budgets and writing timetables all require a logical and analytical mind. As the job often entails having to deal with challenging “human” issues involving children, parents and staff, one benefits from a calm, rational and analytical approach. Schools themselves operate within legal, social and technical frameworks and dealing with the requirements of inspections, legislation and even school-management systems all benefit from detached and abstract approaches often found in the world of research.

School leaders must also be extremely comfortable with data. Don’t get me wrong, I would not suggest that the data processing required in a school equates to that required at the Large Hadron Collider, but the ability to confidently and reliably handle and interpret large data sets is a key skill of a leader in education. Many, if not most, schools are data-driven and mastery of data analysis and statistics will give you a distinct advantage over colleagues with less experience in the area. Data are the life-blood of schools and, though often shunned as the impersonal and regrettable side of the profession, they are at the heart of education and unlikely to take a back seat any time soon. Indeed, I recall a meeting with a school inspector during which we discussed the school’s progress data. I was able to illustrate and argue points using a range of statistical tools that are rarely found in an

Mastery of data analysis and statistics will give you a distinct advantage

Skills transfer Headteacher Mark Whalley learnt how to become a leader while working in research.
inspector’s tool kit. This helped my school through an inspection and did my career no harm at all.

Throughout my postgraduate career, I also honed my presentation skills. From my first talk at CERN during the first term of my PhD, through to lectures as a postdoc, I spent a lot of time planning and delivering talks to expert audiences both small and large. The ability to talk with confidence to a range of audiences is a key skill of school leaders. Whether you are addressing your science department, a whole body of staff or 300 parents, you need the confidence and experience to speak eloquently and convincingly. You are judged by this – you may well be the finest school manager, but fail in front of a critical audience and your credibility is out of the window. Allied to this is the ability to communicate complex ideas. Physics is complex and even with fellow physicists you will surely have to explain your own niche areas. Many issues in schools are extremely complex, made more so by the simple fact that they do not obey the laws of physics. So while you may not be explaining quantum field theory to a parent, I would say that explaining the latest guidance from the UK Department of Education on measuring progress to 100 parents comes a close second.

Having gone through some of the reasons that school leadership offers opportunities for physicists I should issue a caveat or two. Your teams will rarely contain others with backgrounds in physics, even if you are running a science department, so don’t be surprised if you are the only physicist in the room. We are trained in a unique discipline and we do tend to think in a particular way; do not expect your colleagues to think like you or necessarily even understand. Physicists have the potential to make great school leaders, but I wouldn’t like to see a school run by half a dozen of them! Your colleagues will be experienced, intelligent professionals, with equally valuable but potentially very different skill-sets to those you possess. It is this diversity – which is a strength and should always be encouraged – that makes school leadership teams work.

Every child, teacher, parent and community is unique, as is every situation; a consequence of which is that every leadership challenge is distinctive. Coupled to this is the fact that every school leader is unique when it comes to their own values, beliefs, experience, knowledge and expertise. Consequently there is no simple checklist to determine whether you could be a successful school leader, but for those pursuing postgraduate physics and looking for a meaningful career beyond universities and laboratories, school leadership may offer a rewarding future.

Mark Whalley is headteacher at Rookwood School in Hampshire, UK, e-mail dr_mark_whalley@outlook.com

Graduate Careers

October 2017

Target the best candidates for your graduate vacancy

Contact Natasha Clarke today to find out how to get your vacancy noticed.

E-mail natasha.clarke@iop.org
Tel +44 (0) 117 930 1864
The Institute of Physics is awarding 150 scholarships to talented individuals who are starting teacher training in the 2017/18 academic year.

Become an IOP scholar at iop.org/scholarships.

✉️ teach@iop.org ☎️ 020 7470 4959

IOP Institute of Physics
Physics World March 2016

Tessella is the Analytics World Class Center of the Altran Group. We are innovative scientists and engineers who enjoy solving the real-world technical challenges faced by industry-leading companies at the forefront of science and technology.

Using a combination of deep domain knowledge and technical expertise, including data science, analytics and software engineering, we work with our cutting-edge clients to find new ways to unlock the value held within their data, enabling them to make better-informed business decisions.

Careers at Tessella

We are looking for enthusiastic science, mathematics and engineering graduates and postgraduates to join us. You will have the opportunity to apply the knowledge you have gained during your studies and use a range of skills to create, develop and deliver solutions that truly make a difference in the world.

Career Development & Training

We offer tailored career development based on your aspirations, supported by an extensive training programme through which you will learn new technical and soft skills, often leading to recognised professional qualifications.

To Apply

To find out more about the variety of work we do and the exciting careers we have to offer, visit:

http://jobs.tessella.com

www.tessella.com | jobs@tessella.com

UNIVERSITY OF BIRMINGHAM

MSc Physics and Technology of Nuclear Reactors

This one year MSc programme is open to graduates of any physical science, engineering or mathematical discipline wishing to go into the nuclear industry. Integrated labs and tutorials each week bring together a wide range of topics and provide examples and guidance in person.

- Summer project usually taken in industry.
- Sponsored by companies within the UK nuclear industry
- Funding available
- Run continuously since 1956, it is by far the UK’s longest running nuclear power degree
- Study Nuclear Physics, Reactor Materials, Radiation Science, Thermal Hydraulics, Radio Chemistry and more...

www.birmingham.ac.uk/msc-physics-nuclear-reactors

MSc Nuclear Decommissioning and Waste Management

This one year multidisciplinary MSc programme is for graduates from a science-based background, wishing to go into the nuclear industry. It covers a range of the skills required to work in the nuclear industry and is co-taught with the academic staff from the Schools of Geography, Earth and Environmental Science, Physics and Chemistry.

- Industrial advisory board of nuclear companies, including the Nuclear Decommissioning Authority (NDA).
- Funding available
- Developed to meet the growing UK and worldwide need for Nuclear Decommissioning
- Study Decommissioning, Radiation Protection, Fuel Cycle, Waste Management, Financial Appraisal and more...

www.birmingham.ac.uk/msc-nuclear-decommissioning
Today I understood kinetic theory.

Today they understood why I love physics.

There’s nothing like that pivotal moment when everything you’ve taught them suddenly falls into place. As a teacher, that’s when you realise that it’s all been worthwhile, as they become hungry to learn more. Sharing your physics skills could mean experiencing those moments more often than you think.

You could get a tax-free bursary of up to £30k, or a £30k tax-free scholarship from the Institute of Physics, to train as a physics teacher.*

Apply now. Visit education.gov.uk/teachphysics or search: get into teaching.

*Subject to eligibility. For more information visit education.gov.uk/teachconditions

IOP Institute of Physics
Outline of the Role:
• Provide technical and application support, advice and information to customers in the UK and Eire.
• Identify new business opportunities and progress leads.
• Provide quotations to customers and negotiate with customer to secure the business.

Education and Skills required:
• Good honours Degree in a Physical Science based discipline.
• Sales experience desirable.

We offer:
• Attractive salary package for the right candidate.
• Career progression in a world-leading company.

If you wish to apply, please contact
Davanti Solutions Ltd
david.goldsmith@davantisolutions.co.uk
Tel: 01727 751077, Mob: 07854 085963
Career Opportunities at Laser Quantum
Competitive Salaries, Generous Holidays, Annual Bonus, Pension, Private Healthcare

Are you...?

An exceptional individual who can contribute towards a wide range of initiatives within a rapidly growing laser company?

Educated to BSc or PhD level?

From a proven scientific background, ideally with experience of DPSS or Ultrafast laser systems?

Able to work under pressure and achieve deadlines?

Self-motivated and a team player?

Experienced in managing projects or teams?

Excellent at communication and interpersonal skills?

If you are, then we are currently inviting applications for the following roles within our Stockport facility:

New Product Introduction Engineer
Responsible for the technical engineering link between our R&D and production departments. Candidates must have a minimum of 3 years’ experience in a similar role with a good understanding of DPSS laser products and excellent project management skills.

Lifecycle Engineer /Product Manager
Responsible for ensuring excellence in the performance of a product throughout the product lifecycle, interacting with customers to ensure we provide the highest possible quality, at the most competitive price.

Research & Development Engineer
To join our expanding R&D team. The job role will entail optical design via simulation/modelling, testing and optimisation of laser designs and, a desire to continuously improve laser products. The candidate will be comfortable with literature reviews, working with and learning from other team members and liaising across departments offering support to the NPI and production teams as required.

If you are dynamic and ambitious with a track record of success, then please send your c.v. together with a covering letter to: ACharlton@laserquantum.com

About NGS Scholarship PhD Programmes
- cross-disciplinary research at the forefront of science, engineering, computing and bio-medicine
- 4-year direct-PhD award
- fully-funded, tuition fees waived for 4 years
- generous monthly stipend and allowances (both tax-free) for ITware, books & conferences
- opportunities for PhD research based both in Singapore, and overseas
- Open worldwide to Bachelor degree holders (and above), with at least a very good 2nd Upper Honours, or equivalent qualifications
- excellent research potential from all branches of life, physical, computer & engineering sciences, and medicine

About Our Research
NGS encourages research in or at the intersection of:

- Engineering
 - Biomolecular, Chemical, Computer, Electrical, Environmental, Manufacturing, Mechanical, Materials, Nanotechnology, Robotics
- Information Technology
 - Bioinformatics, Computational & Systems Biology, Data Mining, Infocommunications, Interactive and Digital Media
- Life Sciences
 - Biochemistry, Cancer Research, Cell and Molecular Biology, Developmental Biology, Genetics, Genomics, and Proteomics, Immunology, Lipidomics, Pharmacology, Physiology, Regenerative Medicine, Stem Cell Research, Structural Biology
- Physical Sciences
 - Biological Physics, Chemistry, Soft-condensed Matter Physics, Nonlinear Dynamics and Complex Systems, Nano- and Molecular Electronics, Photonics, Phononics, Thermoelectrics, Quantum Information and Quantum Computation
- Specialised Fields
 - Neuroscience, Carbon Science and Technology, Bioimaging, Environmental Life Sciences Engineering, Solar Energy, Healthcare Research and Technology

Seize the opportunity, challenge yourself, and achieve research excellence among the world’s best. Apply today.
Physics PhD Studentship Opportunities

Funding is available in South East England*

Take nine world-class University Physics Departments, bring together their research, knowledge and resources. The result is the South East Physics Network (SEPnet).

Through SEPnet we offer a regional collaborative training programme for all Physics PhD students with a real focus on your future. Find out more including how to apply and learn about other postgraduate study options at www.sepnet.ac.uk/pw

*Subject to eligibility
Exciting PhD positions at the European Molecular Biology Laboratory (EMBL)

The European Molecular Biology Laboratory (EMBL) invites you to apply for PhD positions in: Heidelberg, Grenoble, Hamburg, Hinxton (near Cambridge), and Monterotondo (near Rome).

Are you looking to contribute your creativity to an international team of scientists from all disciplines focusing on basic research in the area of molecular life sciences? We invite candidates with background in Biology, Chemistry, Physics, Mathematics, Computer Science, Engineering and Molecular Medicine to apply.

EMBL opens the door to your scientific career: our students have an outstanding publication record, are a vital part of our global collaborations and receive their degrees jointly with our network of excellent partner universities in 17 different countries.

Our PhD positions come with generous fellowships, including broad health care benefits and pension access.

Application Instructions
Please apply online through http://www.embl.de/training/eipp/application/index.html

The registration deadline is 10 April 2017.
The deadline for submission of the online application is 17 April 2017.
Interviews will take place in July 2017.

Additional Information
EMBL is an inclusive, equal opportunity employer offering attractive conditions and benefits appropriate to an international research organisation.
Successful candidates would start their work at EMBL by mid of October 2017.

For further information, see our web page or contact EMBL Graduate Office.

Application deadline: 17 Apr 2017
Fully-funded* 4-year PhD studentships

EPSRC Centre for Doctoral Training in Metamaterials

Applications are invited for up to 16 new PhD studentships starting in September each year at our centre of excellence in metamaterial research. Join our unique cohort-training programme, exploring original research from fundamental physics through to material engineering.

► Optical, Infra-red and THz Photonics and Plasmonics
► Magnonics, Spintronics and Magnetic Metamaterials
► Microwave metamaterials
► Acoustic and Fluid-dynamical Metamaterials
► Wave Theory and Spatial Transformations
► Graphene and other 2D Materials, and related Devices
► Nanomaterials and nanocomposites
► Quantum metamaterials

www.exeter.ac.uk/metamaterials

* UK and EU students receive stipend and fees, non-UK/EU students receive fees only.

Background: www.studiotwentyeight.com
Postgraduate Opportunities at Royal Holloway University of London

The Department of Physics at Royal Holloway offers PhD studentships in research projects which range from fundamental studies of the basic properties of matter (at the lowest temperatures and highest energies) to advanced applications of Physics. Experimental and theoretical studentships funded by Research Councils, the European Union, CERN, ISIS, Diamond, the National Physical Laboratory and Royal Holloway are available in the following areas:

Centre for Condensed Matter Physics
• New functional materials (thermoelectrics, batteries, magnets) using neutrons, x-rays & computer simulations
• Strongly correlated electrons (quantum phase transitions, unconventional superconductivity, cold atoms)

London Low Temperature Laboratory
• Ultra-low temperature frontier (topological superfluidity, spin liquids, quantum nano-electronics)
• Development of new instrumentation and thermometry for quantum technologies

Centre for Nanophysics & Nanotechnology:
• Quantum electronics, superconducting qubits, mesoscopic semiconductor devices and sensors
• Fundamental properties of matter and interfaces at the nanoscale, quantum metrology

Centre for Particle Physics
• Experimental Particle Physics at the LHC with ATLAS (Higgs physics, top quarks, searches for extra dimensions)
• Experiments for direct detection of Dark Matter (DEAP/CLEAN, DMTPC, LZ)
• Detector development for neutrino physics (Hyper-K)
• Theoretical Particle Physics: Physics Beyond the Standard Model (BSM), Astro-particle Physics, phenomenology for the LHC (Higgs, BSM)

John Adams Institute for Accelerator Science
• Future accelerators and studies for the International Linear Collider (laserwire, beam diagnostics and monitoring)
• High-luminosity LHC, accelerator technology for neutron and light sources

For further information, visit www.royalholloway.ac.uk/physics/research, e-mail physics@rhul.ac.uk, or telephone 01784 443448. For access to online application forms, visit www.rhul.ac.uk/studyhere/postgraduate/applying.

10 fully funded places available in Applied Photonics
The Centre for Doctoral Training in Applied Photonics is offering 10 fully funded places to exceptional candidates.

The CDT offers a 4 year programme with an emphasis on research and development in a commercial environment. Most research in the Centre takes the form of EngD projects but some PhD projects will be available.

The Engineering Doctorate (EngD) is an alternative to the traditional PhD for students who want a career in industry. The programme combines PhD-level research projects with masters-level technical and MBA courses, and the students spend about 75% of their time working directly with a company.

Funds are also available to support company employees who wish to study for an EngD whilst remaining in employment.

Funding
Fee plus stipend of a minimum £20,796 for EngD researchers and £14,296 for PhD researchers.

Entry Qualifications
1st class or 2.1 degree at MPhys or MEng level in physical sciences, particularly physics and electrical engineering graduates. Exceptional applicants from a BSc or BEng programme are also to be considered.

Further Details
For further details and list of current projects and eligibility criteria please visit www.cdtphotonics.hw.ac.uk or contact Professor Derryck Reid e: cdtphotonics@hw.ac.uk t: 0131 451 3792

For online application forms, visit www.cdtphotonics.hw.ac.uk
Teach, Research and Make a Difference with Researchers in Schools

A three-year training and professional development programme exclusively for researchers who have completed their doctorate

• Gain Qualified Teacher Status via a programme of observation and classroom teaching.
• Develop transferrable professional skills through bespoke training.
• Take our Research Leader in Education Award, a professional qualification recognising excellence in research practice.

Benefits include:

• Salary for all subjects, with uplift for maths and physics: year one salary of up to £33,900, rising to a salary up to £38,500 in year two.
• Dedicated time off-timetable to pursue the programme aims.
• Honorary academic title from a research-intensive university.

Apply today at www.researchersinschools.org
how deep is the first cut?

You are a surgeon, scalpel in hand. But skin is tough, flesh is compliant.

Deep cuts are easy. How shallow a cut could a top surgeon make by hand? And how?

There is no answer at the back of the book.

Discuss your approach to this and the real problems you could be solving at TTP every day.
explore@ttp.com

Apply yourself. Explore TTP.
Imagine taking part in the largest scientific experiment in the world. CERN needs more than physicists, engineers and technicians; if you are a student or a graduate just starting your career, or are an experienced professional - whatever your field of expertise, CERN could be your next opportunity.

POSTGRADUATE OPPORTUNITIES

Discover our range of Postgraduate opportunities taught in the Department of Physics at York. The University of York is a world-class University, it is one of the UK’s leading Universities and a proud member of the Russell Group.

OUR GRADUATE PROGRAMMES COMPRISE:
- Three – year PhD in Physics
- One – year MSc by Research in Physics
- One – year Taught MSc in Fusion Energy

RESEARCH AREAS INCLUDE:
- Condensed Matter Physics
- Nuclear Physics
- Plasma Physics and Fusion

For further information please contact physics-enquiries@york.ac.uk

We offer exciting graduate programmes across the range of physical sciences. We boast major new labs and centres including:
- York Centre for Quantum Technologies – leading the UK Quantum Communication Hub
- York Nuclear Physics Group – the largest nuclear physics group in the UK
- York Plasma Institute – home to the largest nuclear fusion research group in the UK

All these programmes are supervised by academics who are leaders in their field. We offer a strong programme of professional development which ensures that our research students are well-equipped for their future careers.

Visit our webpages at york.ac.uk/physics/postgraduate

Have you thought of a career at CERN?
Take your next career step and join us!

Imagine taking part in the largest scientific experiment in the world. CERN needs more than physicists, engineers and technicians; if you are a student or a graduate just starting your career, or are an experienced professional - whatever your field of expertise, CERN could be your next opportunity.

TAKE PART!
cern.ch/career
Centre for Doctoral Training in Medical Devices (4 year studentships) for Engineers and Physical Scientists

Doctor of Engineering in Medical

We are currently recruiting graduates in Engineering or the Physical Sciences for September 2017 who have obtained, or expect to obtain, a first or upper second class honours degree to join the Medical Devices Centre for Doctoral Training at the University of Strathclyde which is funded by the EPSRC. The centre is designed to allow graduates to carry out research relevant to problems in healthcare that can be addressed through new medical devices or related technologies. The students of the centre have the opportunity to work with medical companies and NHS and other clinical groups in state of the art research projects. The projects carried out in the centre have a high degree of relevance to the clinicians, patients and medical companies who are the end users of such research. Graduates accepted for the centre who are UK citizens will receive a four-year studentship covering living expenses and fees. EU citizens who have been resident in the UK for 3 years or more are also eligible for the full studentship. Fees only support is available for other EU citizens. Additional information can be found on our website at http://www.strath.ac.uk

Applications can be made online at http://pgr.strath.ac.uk

For further information please contact: Carol McInnes, Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW

Telephone: 0141 548 3781
Email: carol.b.mcinnes@strath.ac.uk

KEK, High Energy Accelerator Research Organization

Call for Nomination for Next Director-General of KEK

KEK, High Energy Accelerator Research Organization, invites nominations for the next Director-General whose term will begin April 1, 2018.

In view of his/her role that presides over the business of KEK as a representative of the Inter-University Research Institute Corporation, nominees shall be:

1) persons of noble character, with relevant knowledge and experience and having abilities to manage its educational and research activities properly and effectively.
2) persons expected to promote with long-term vision and strong scientific leadership, the highly advanced, internationalized, and inter-disciplinary research activities of KEK by getting support from the public.
3) persons expected to establish and carry out the medium-term goals and plans.

The term of appointment is three years until March 31, 2021 and shall be eligible for reappointment only twice. Thus, he/she may not remain in office continuously over a period 9 years.

We widely accept the nomination of the candidates regardless of their nationalities.

We would like to ask you to recommend the best person who satisfies requirements for the position written above.

Nomination should be accompanied by:
1) letter of recommendation, 2) brief personal history of the candidate, and 3) list of major achievements (publications, academic papers, commendations and membership of councils, etc.). The nomination should be submitted to the following address no later than May 31, 2017:

- Documents should be written either in English or in Japanese.
- Forms and details are available at: https://www.kek.jp/en/NewsRoom/Release/20170301090000/

Takayuki Sumiyoshi
The Chair of Director-General Selection Committee
High Energy Accelerator Research Organization

Inquiries concerning the nomination should be addressed to: General Affairs Division
General Management Department
KEK, High Energy Accelerator Research Organization
1-1 Oho, Tsukuba, Japan 305-0801
Tel +81-29-864-5114 Fax +81-29-864-5560
Email: kek.dgsc@ml.post.kek.jp
The Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS) invites applications for permanent staff positions at all levels. IHEP is a comprehensive research laboratory for particle and astroparticle physics, accelerator physics and technology, radiation technologies and applications, as well as for nuclear analytical techniques and interdisciplinary research.

For More Information: http://english.ihep.cas.cn/

Recruitment Objectives:
Based on the needs of the research areas and the disciplines development of IHEP, we are now publicly recruiting overseas outstanding talents and scholars of relevant disciplines who possess research abilities and innovation awareness.

Programs:
1 National “Thousand Talents Program” (full time & part time programs) for established scientists.
2 National “Thousand Young Talents Program” for outstanding junior scientists.
3 Pioneer “Hundred Talents Program” of CAS, for outstanding junior scientists, excellent junior detector or accelerator experts.
4 “Outstanding Talents Program” of IHEP, for scientific research or technical talents.

Research Areas:
Experimental Particle and Nuclear Physics, Theoretical Physics, Astronomy and Astrophysics, Nuclear Technology, Multidisciplinary Research, Accelerators, Neutron physics, Condensed matter physics

Contact:
Division for Human Resources, Institute of High Energy Physics, Chinese Academy of Sciences
E-mail: zhengwl@ihep.ac.cn
Tel: (86)010-88235879, Fax: (86)010-88233102
Address: No. 19 (B), Yuquan Road, Shijingshan District, Beijing. (Postcode: 100049)

Applications should include a CV, an outline of academic accomplishments, description of current research and plan for future research, 3 – 5 published papers representative of your work, and a record of citations for your work. You should arrange for 3 letters of reference from experts in your field to be sent by post or email (established scientists are not requested).

For detailed information please visit http://english.ihep.cas.cn/ju/201303/W020130326502657080582.pdf
Target the best candidates for your graduate vacancy

Contact Natasha Clarke today to find out how to get your vacancy noticed.

E-mail natasha.clarke@iop.org
Tel +44 (0) 117 930 1864